80 research outputs found

    Kickstarting Choreographic Programming

    Full text link
    We present an overview of some recent efforts aimed at the development of Choreographic Programming, a programming paradigm for the production of concurrent software that is guaranteed to be correct by construction from global descriptions of communication behaviour

    On Asynchrony and Choreographies

    Get PDF
    Choreographic Programming is a paradigm for the development of concurrent software, where deadlocks are prevented syntactically. However, choreography languages are typically synchronous, whereas many real-world systems have asynchronous communications. Previous attempts at enriching choreographies with asynchrony rely on ad-hoc constructions, whose adequacy is only argued informally. In this work, we formalise the properties that an asynchronous semantics for choreographies should have: messages can be sent without the intended receiver being ready, and all sent messages are eventually received. We explore how out-of-order execution, used in choreographies for modelling concurrency, can be exploited to endow choreographies with an asynchronous semantics. Our approach satisfies the properties we identified. We show how our development yields a pleasant correspondence with FIFO-based asynchronous messaging, modelled in a process calculus, and discuss how it can be adopted in more complex choreography models.Comment: In Proceedings ICE 2017, arXiv:1711.1070

    Now It Compiles! Certified Automatic Repair of Uncompilable Protocols

    Get PDF
    Choreographic programming is a paradigm where developers write the global specification (called choreography) of a communicating system, and then a correct-by-construction distributed implementation is compiled automatically. Unfortunately, it is possible to write choreographies that cannot be compiled, because of issues related to an agreement property known as knowledge of choice. This forces programmers to reason manually about implementation details that may be orthogonal to the protocol that they are writing. Amendment is an automatic procedure for repairing uncompilable choreographies. We present a formalisation of amendment from the literature, built upon an existing formalisation of choreographic programming. However, in the process of formalising the expected properties of this procedure, we discovered a subtle counterexample that invalidates the original published and peer-reviewed pen-and-paper theory. We discuss how using a theorem prover led us to both finding the issue, and stating and proving a correct formulation of the properties of amendment

    Process-aware web programming with Jolie

    Full text link
    We extend the Jolie programming language to capture the native modelling of process-aware web information systems, i.e., web information systems based upon the execution of business processes. Our main contribution is to offer a unifying approach for the programming of distributed architectures on the web, which can capture web servers, stateful process execution, and the composition of services via mediation. We discuss applications of this approach through a series of examples that cover, e.g., static content serving, multiparty sessions, and the evolution of web systems. Finally, we present a performance evaluation that includes a comparison of Jolie-based web systems to other frameworks and a measurement of its scalability.Comment: IMADA-preprint-c

    Communications in Choreographies, Revisited

    Full text link
    Choreographic Programming is a paradigm for developing correct-by-construction concurrent programs, by writing high-level descriptions of the desired communications and then synthesising process implementations automatically. So far, choreographic programming has been explored in the monadic setting: interaction terms express point-to-point communications of a single value. However, real-world systems often rely on interactions of polyadic nature, where multiple values are communicated among two or more parties, like multicast, scatter-gather, and atomic exchanges. We introduce a new model for choreographic programming equipped with a primitive for grouped interactions that subsumes all the above scenarios. Intuitively, grouped interactions can be thought of as being carried out as one single interaction. In practice, they are implemented by processes that carry them out in a concurrent fashion. After formalising the intuitive semantics of grouped interactions, we prove that choreographic programs and their implementations are correct and deadlock-free by construction
    • …
    corecore